EXPLORING INTERCONNECTIONS BETWEEN MACHINE LEARNING AND OPERATIONS STRATEGY

Code: 220107244
Downloads
5
Views
306
Compartilhe
Título

EXPLORING INTERCONNECTIONS BETWEEN MACHINE LEARNING AND OPERATIONS STRATEGY

Autores:
  • Thais Carreira Pfutzenreuter

  • Nathália Renata Grossi Chamie

  • Sérgio Eduardo Gouvêa da Costa

  • Edson Pinheiro de Lima

DOI
  • DOI
  • 10.37885/220107244
    Publicado em

    16/02/2022

    Páginas

    2818-2830

    Capítulo

    217

    Resumo

    Within the data science and artificial intelligence fields of study, machine learning have supported performance improvement in medicine, manufacturing, law and even sport environments. The purpose of this paper is to investigate how machine learning has been used as a tool to improve the assertiveness of decision-making, providing competitive advantages in the wide field of operations management. This exploratory research analyzes the content of five machine-learning studies, relating each of them to Slack’s strategy pillars: cost, speed, quality, flexibility and dependability. Research design was limited to Scopus’ papers published exclusively in high impact journals. Results emphasize the important role of machine learning in organizational competitive advantages and limitations are used to address further research suggestions, extending the present investigation with a more extensive bibliographic portfolio analysis. The contribution of this paper is a matrix analysis of how machine-learning projects indirectly contribute to at least three strategy dimensions simultaneously. Complementarily, an illustration was built for a better comprehension of the interrelationships among the strategic pillars reinforced by the analyzed studies.

    Ler mais...
    Palavras-chave

    Artificial Intelligence, decision making, machine learning, Operations, Operations Strategy, Slack, Strategy.

    Publicado no livro

    OPEN SCIENCE RESEARCH I

    Licença

    Esta obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional .

    Licença Creative Commons

    O conteúdo dos capítulos e seus dados e sua forma, correção e confiabilidade, são de responsabilidade exclusiva do(s) autor(es). É permitido o download e compartilhamento desde que pela origem e no formato Acesso Livre (Open Access), com os créditos e citação atribuídos ao(s) respectivo(s) autor(es). Não é permitido: alteração de nenhuma forma, catalogação em plataformas de acesso restrito e utilização para fins comerciais. O(s) autor(es) mantêm os direitos autorais do texto.