ARTIFICIAL NEURAL NETWORKS FOR PREDICTING ANIMAL THERMAL COMFORT

Code: 211106746
Downloads
16
Views
264
Compartilhe
Título

ARTIFICIAL NEURAL NETWORKS FOR PREDICTING ANIMAL THERMAL COMFORT

Autores:
  • Pedro Hurtado De Mendoza Borges

  • Zaíra Morais dos Santos Hurtado de Mendoza

  • Pedro Hurtado de Mendoza Morais

  • Ronei Lopes dos Santos

DOI
  • DOI
  • 10.37885/211106746
    Publicado em

    28/12/2021

    Páginas

    28-47

    Capítulo

    2

    Resumo

    The objective of this study was to develop artificial neural networks (ANNs) for predicting animal thermal comfort based on temperature and relative humidity of the air for each day of the year. The data on temperature and relative humidity for a 25-year historical series collected at the Padre Ricardo Remetter Conventional Meteorological Station, located in the city of Santo Antônio de Leverger - Mato Grosso (Brazil), were retrieved from the website of the National Institute of Meteorology. According to the day of the year, the temperature and humidity index was determined as a function of the climatic variables. Therefore, the day of the year was the input variable of the neural networks, and the temperature and humidity index (THI) was the output variable. The number of layers and neurons used for establishing different architectures was variable. Data were adjusted on the basis of mean square errors, performance and efficiency indexes, and normality tests. The values estimated by the networks and those obtained from the historical series did not differ significantly. The networks with the best performance were selected for graphical analysis of residuals. The ANNs developed in this study predicted animal thermal comfort with adequate reliability and precision.

    Ler mais...
    Palavras-chave

    Time series, Artificial intelligence, Comfort index.

    Licença

    Esta obra está licenciada com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional .

    Licença Creative Commons

    O conteúdo dos capítulos e seus dados e sua forma, correção e confiabilidade, são de responsabilidade exclusiva do(s) autor(es). É permitido o download e compartilhamento desde que pela origem e no formato Acesso Livre (Open Access), com os créditos e citação atribuídos ao(s) respectivo(s) autor(es). Não é permitido: alteração de nenhuma forma, catalogação em plataformas de acesso restrito e utilização para fins comerciais. O(s) autor(es) mantêm os direitos autorais do texto.

    PlumX